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Abstract

A unified approach for predicting the transition to dispersed flow patterns in gas-liquid and liquid—
liquid systems is suggested. It is based on the revised models for predicting the maximal drop size in a
turbulent field which account for the holdup of the dispersed phase. Examining the range of applicability of
the various models for transition to dispersed flow indicates that it is determined by the Eotvos number,
Eop = ApgD*/8a. Comparisons with available experimental data for gas-liquid and oil-water systems
show that these models are capable of predicting the effects of fluids’ physical properties, tube diameter and
inclination. The models suggest a non-monotomic effect of the tube diameter on the critical fluids’ flow
rates, which implies that the up-scaling of data should be approached with care. © 2001 Elsevier Science
Ltd. All rights reserved.

1. Introduction

A dispersion of two immiscible fluids, where one of the fluids forms a continuous phase and the
other is dispersed in it, is a flow pattern which is often observed in liquid-liquid and gas-liquid
systems. In oil-water two-phase flows, there are water-in-oil (w/0) and oil-in-water (o/w) dis-
persions. Emulsion is a stable dispersion of fine droplets (w/o or o/w), which usually involves the
presence of surfactants inhibiting coalescence of the dispersed droplets. In gas-liquid systems, the
bubbly flow patterns are dispersions of gas in a continuous liquid phase, whereas the mist pattern
is a dispersion of liquid droplets in the gas core.

Dispersions can be obtained at low flow rates as a result of mixing in a device used to introduce
the two fluids into the tube. For sufficiently low holdup of the dispersed phase, low density
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contrast between the continuous and dispersed phases, or weak gravitational field, coalescence is
not prominent even in horizontal tubes and the dispersion may sustain far downstream. However,
dispersions will always form in sufficiently intense motions of two immiscible fluids, where the
dispersive forces are due to the turbulent energy dissipation. The prediction of dispersed flow
boundaries is then based on the modeling of the turbulent dispersive forces balancing with the
resistant forces due to surface tension and gravity field.

For horizontal and slightly inclined gas-liquid flows Taitel and Dukler (1976) have modeled the
dispersed bubble boundary by equating the turbulent breakage forces with the buoyant forces
tending to keep the gas at the top of the pipe. These forces were evaluated for a configuration of
stratified gas-liquid flow and the shear velocity was used for representing the turbulent velocity
fluctuations. Although the stratified flow and dispersed bubble flow patterns do not share a
common boundary, the Taitel and Dukler (1976) model has been successfully applied for pre-
dicting the transition to dispersed bubble flow in horizontal and near-horizontal pipes.

For vertical and off-vertical inclined gas-liquid systems, Taitel et al. (1980) and Barnea et al.
(1985) have suggested Hinze’s (1955) model for the breakage of drops or bubbles in a uniform and
homogeneous turbulent field. According to this model the turbulence level in the liquid phase
should be sufficiently high to overcome the surface tension forces, which resist deformation and
breakup and to disperse the gas phase into small and stable spherical bubbles. Calderbank’s
(1958) correction for the effect of the dispersed phase holdup on the maximal bubble diameter and
Brodkey (1969) model for the maximal size of stable spherical drops were used to obtain a cri-
terion for transition to dispersed bubble flow. This model was later extended (Barnea, 1987) by
introducing the effect of buoyant forces in horizontal and shallow inclinations on the stable drop
size, so that the Hinze’s mechanism could be applied for the whole range of pipe inclinations.
However, these models are suitable for predicting the transition to dispersed bubble flow only for
relatively low gas superficial velocities. With increasing the gas flow rate, the models deviate from
the experimental boundary, showing an incorrect trend of a decline in the transitional liquid flow
rate. As a remedy, Taitel et al. (1980) and Barnea (1987) have suggested that at high gas holdup,
the model based on Hinze’s mechanism should be overruled by the criterion of a maximal packing
density of dispersed gas bubbles. Transition then takes place at a maximal in situ holdup
(eqg = 0.52, see Fig. 1). Chen et al. (1997) recently proposed a model which considers the balance
between the liquid turbulent kinetic energy and bubbles’ surface energy as a criterion for tran-
sition to dispersed bubbles. This model predicts a monotonous increase in the liquid transitional
flow rate with increasing the gas flow rates, but it underestimates the critical liquid rate at low gas
rates.

Hinze’s mechanism for breakage of droplets in turbulent flow was suggested also for predicting
transition to fully dispersed patterns in liquid-liquid flows (Brauner and Moalem Maron,
1992a,b). It was shown (Brauner, 1998) that by adjustment of the free parameter in Calderbank’s
(1958) correction for the effect of the holdup on the maximal drop size, it is possible to follow the
experimental data of transition to o/w and w/o dispersions (emulsions) as observed in various oil—
water systems. However, the criterion of maximum dispersed phase packing (g9 = 0.52) is not
useful for liquid-liquid systems. At high flow rates the flow patterns of o/w dispersion and w/o
dispersion share a common boundary along the phase inversion curve. Experiments show that the
dispersed phase holdup can exceed 74% (corresponding to close packing of equally sized spheres).
A primary factor which seems to affect the critical holdup at phase inversion is the liquid viscosity
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AIR - WATER, D=2.5 cm, Eop=11

Theory: — present
—=Barnea(1987)

Exp. Barnea & Taitel (1985)

p=—90"

Liquid Superficial Velocity, U q(m/sec)

Gas Superficial Velocity, Ugg(m/sec)

Fig. 1. Comparison of the H-model predictions with experimental data for air—water flow in vertical and horizontal
tubes, D = 2.5 cm. 4 — dispersed bubbles (DB); O — intermittent and slug (I); > — annular (AN); B — stratified-wavy

(SW).

ratio. The holdup of the dispersed oil droplets along the phase inversion curve increases with
increasing the oil viscosity and reaches a value of ~ 8§5-90% for viscous oils (Arirachakaran et al.
(1989), Brocks and Richmond (1994)).

In this paper, the various mechanisms for dispersion formation are considered. Models sug-
gested are revised and extended to yield a unified approach for predicting the transitions to
dispersed flow patterns in a variety of gas-liquid and liquid-liquid systems. The study is aimed at
elaborating the effect of fluids’ physical properties, tube diameter and inclination on the fluids’
flow rates required for stabilizing fully dispersed flow patterns. Examining the range of applica-
bility of the various mechanisms and models for transition to dispersed flow indicates that it
depends on the Eotvos number (Eop = ApgD?/8c). This dimensionless parameter has been al-
ready shown to be important in determining the stratified flow characteristics and its stability
boundaries (Brauner and Moalem Maron (1992a,b, 1998); Brauner et al. (1998)) and in modeling
the drift velocity of drops and bubbles (e.g., Zukoski, 1966; Clift et al., 1978; Grace et al., 1978).

2. Criterion based on Hinze’s (1955) model (H-model)

2.1. Hinze’s model for dilute dispersions

Most of the models for predicting the size of bubbles or drops in a turbulent flow field are based
on the Kolmogorov (1949)-Hinze (1955) model for emulsification in turbulent flow. Using
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dimensional arguments they show that the splitting of a drop (or a bubble) in turbulent flow
depend on the critical Weber number, We.i = tdn.x/0o, Which represents the ratio between the
external force (7) that tends to deform the drop, and the counteracting surface tension force. For
the sake of clarity of the herein proposed extended model, physical arguments and underlying
assumptions of Hinze’s model are briefly reviewed.

In turbulent flows, the spatial regions where viscous shear is effective are small compared to the
size of the large drops and the dominant external stress is the dynamic pressure of turbulent eddies
of size d. In this case, We.; (and the associated maximal drop size, dnax) evolves from a balance
between the turbulent kinetic energy and the drop surface energy (Hinze, 1955)

pu?r 4o

~

1
2 dmax ’ ( )

where p, is the density of the continuous phase. In isotropic and homogeneous turbulence, the
turbulent kinetic energy can be related to the rate of turbulent energy dissipation (per unit mass of
the continuous phase), e

u? = 2(edpy )" (2.1)
provided
1/4
,13
Iy = <p3cé> K dpax < 0.1D, (2.2)

where 7, is the continuous phase viscosity, /i is the Kolmogorov microscale and 0.1D represents
the length scale of energy containing eddies in a pipe of diameter D (Hinze, 1959). Based on these
arguments and assumptions, the following relation was derived by Hinze (1955)

& 3/5_2/5 _ _
dmax( . ) &5 = C = 0.725. (3)

The constant 0.725 was obtained by fitting to experimental data of various liquid-liquid dis-
persions (Clay, 1940) and corresponds to Weui = pu'*dmax /0 = 1.17. This critical Weber number
was shown to be in agreement with the value predicted theoretically by considering the resonance
frequencies of liquid drops (Sevik and Park, 1973).

In pipe flow, the mean rate of energy dissipation, e is related to the frictional pressure drop
(expressed in terms of a friction factor f)

U,  2UMf P
Dp.(1—es) D p(l—ea)

Then, Hinze’s correlation becomes

(), o (=) [ar] g

It is to be noted that for high fluid rates, where drops’ or bubbles’ dispersions develop, the drift
velocity between the dispersed and continuous phases is negligible. In this case, the homogeneous

e =

(4)
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no-slip model is applicable, whereby the in-situ holdup is determined by the superficial velocities
of the dispersed and continuous phases (Uys = Q4/A4 , Uss = O./A)

Uds

— — 1 — 6.1
Uds + ch’ Pm €dPy + ( 8d)pc7 ( )

&d

U.=Uy=Us+ Uy = U,. (62)

Correlations for the friction factor in smooth or rough conduits can be used in (5) to calculate
dmax- For instance, Blasius equation (f = 0.046/Re’?) yields

. 1—eg)] ™ o
( ) - 1.88[u] We "% RO, 1.8Re;"7 < (—) <0.1, (7)
D/, Pm D/,

where Re, = p.DU,/n, and We. = p,U’D/o.

Although the turbulence field in pipe flow is not homogeneous and isotropic, Eq. (5) has been
proven to yield a good prediction of the maximal drop size in the flow of dilute dispersions for a
variety of two-fluid systems, as long as dn.x < 0.1D (i.e., Kubie and Gardner (1977); Karabelas
(1978)). It is to be noted that previous studies considered dilute dispersions, hence
p.(1 —e4)/p,, ~ 1 was assumed. In dispersed bubble flow p,, ~ p.(1 — &4) and this assumption
holds also for non-dilute dispersions. For liquid-liquid systems, where p, ~ p,, this approxima-
tion is valid for ¢y < 1. In gas-liquid mist flow, however, the liquid forms the dispersed phase and
p(1 —e4)/p,, =~ (pg/pL)(1 —eL)/eL. The value of this term significantly deviates from the one
already for very small holdup of entrained liquid drops.

2.2. Extension of Hinze's model for dense dispersions

The Hinze model (Egs. (5) and (7)) considers the stability of a single drop in a turbulent field.
Therefore, the model may be valid only for dilute dispersions. In dense dispersions, droplet co-
alescence takes place. Under such conditions, the incoming flow of the continuous phase (at rate
0.) should carry sufficient turbulent energy to disrupt the tendency to coalesce and to disperse the
other phase, which flows at a rate Q4. The (minimal) rate of surface energy thus formed is given by

. nd>. o 60
E P— max = — .
S Tcdg‘lax/6 Qd dmax Qd (8)

The rate of surface energy production of the dispersed phase is proportional to the rate of
turbulent energy supply by the continuous phase

2
oU B 60
2 QC B CH dmax

Oa; ©)

where Cy is a constant, Cy = O(1). Substituting (2.1) and (4) yields
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With Blasius equation for f, Eq. (10) reads

b\ _ 7 61 peocgars( )Ty e s ] (11.1)
D ), T TH e ¢ R p. 1 —&g '
provided
dmﬁx
1.82Re"7 < (7> <0.1. (11.2)

Thus, given a two-fluid system and operational conditions, the maximal drop size is the largest
of the two values obtained via (7,11.1)

o (55}

It is of interest to note that the empirical correction suggested by Calderbank (1958) for the
effect of the dispersed phase holdup on the maximal drop bubble size was to multiply the RHS of
(5) and (7) (with p,,/p.(1 —eq) ~ 1) by f(eq) = 1 + be§. The parameter valuesa = 0.5and b =
5.72 were suggested by fitting to his experimental data. The similarity with the 0.6 power of & in
(11.1) and (11.2) implies that such a correlation can reasonably describe the increase of dp,, with
&q for some range of ¢4 > 0.

2.3. Criterion for transition to dispersed flow

The transition to dispersed flow pattern takes place when the continuous phase turbulence is
sufficiently intense to break the dispersed phase into droplets smaller than the critical size, d.;.
Thus the transitional criterion is

dmax g dcrit ( 1 3)

provided Re. > 2100 and 1.82Re;*” < duii/D < 0.1.

In dilute dispersions, Q4 < Q., the flow rate of the continuous phase should be raised to a value
where the momentum of turbulent eddies is sufficient to meet the criterion (13) with d,,, obtained
via Hinze’s model (7). With increasing Oy, the same turbulence level in the continuous phase can
be achieved with lower Q.. However, this turbulence level, which is sufficient to produce a drop
with diax < dee in a dilute dispersion, may be incompatible with the high-flow rates of the dis-
persed phase. A higher rate of turbulent kinetic energy (higher Q,) is required to meet the criterion
(13) with d.x evaluated via (11.1) and (11.2).

The critical drop diameter, d.; required for applying (13) can be estimated similarly to the
suggestion made by Barnea (1987)

dcri . dcrr dc
t:Mm(—,—b> (14)
D D D

Here d., represents the maximal size of drop diameter above which drops are deformed
(Brodkey, 1969)
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- d, 0.40 0.224
dey =5 = — e e (15.1)
|pe = palg cos B (cos f')/*Eoy)
ApgD* . [|p] || < 45°
Eon = 29 = ’ ’ 15.2
=" 0 P {90—|ﬂl, || > 45° (15.2)

and d_, is the maximal size of drop diameter above which migration of the drops towards the tube
walls due to buoyant forces takes place
dCb 3 P ; 3 Pe U?

C;’c =0 —— = Fca Fc:707 16
"D 8 |Ap| Dgcos 8prg " 4 Dgcos f3 (16)

where £ is the inclination angle to the horizontal (positive for downward inclination). The value of
B in (15.1) and (15.2) reflects the notion that in horizontal and lightly inclined tubes, drops’
distortion results mainly from the lateral gravity force (pushing the drops towards the (upper or
lower) tube wall), whereas in vertical and off-vertical inclined tubes, drops distortion is due to the
axial buoyant force. It is to be noted, however, that the inclusion of (cos ﬁ’)l/ Zin d., 18 not critical,
since its effect is of the order of uncertainty in the value of the constant parameter (0.224) in (15.1).

Criterion (13), with (12) and (14), yields a complete transitional criteria to dispersed flow. When
the fluid flow rates are sufficiently high to maintain a turbulence level where dya.x < deo
and dn.x < dep, spherical non-deformable drops are formed and creaming of the dispersed
droplets at the upper or lower tube wall is avoided. Thus, the dispersed flow pattern is stable.

The values of the numeric constants used for modeling d., and d,;, (0.4 and 3/8 in (14,11.1,11.2),
respectively) are not strict and can be turned to better fit experimental data available for a par-
ticular system. Higher values of d_; yield lower critical Q.. Also, the constant Cy may require
some tuning. A value of Cy > 1 reflects a situation where not all the turbulent kinetic energy in
the continuous phase is available for dispersing the other phase (Q. increases proportionally to
Cy**. In the framework of (13), a tuning of Cy represents the combined effects of the constants
used in modeling dy.x and d.i;, therefore Cy < 1 should not be ruled out. If not stated otherwise,
Cy = 1 is assumed.) In the following, the model consisted of criterion (13) with (7,11.1,15.1,16) is
denoted by the H-model.

In applying the H-model, the restrictions that define its validity range should not be ignored.
The first inherent restriction is that the predicted fluids flow rates along the transitional boundary
correspond to turbulent flow of the continuous phase (Re. > 2100). Additional restrictions are
due to the turbulence model used by Hinze (1955), which limit the model applicability range to
conditions where 1.8 Re;*7 < Aax = derit < 0.1. With dorye = d.,, the lower bound corresponds to
Eop < 1.5 x 1072Re! 4. It is worth noting at this point that, accordlng to Kolmogorov (1949), for
n4/n. > 1, viscous shear is negligible when dp,, > lk(vd /ve)**, in which case the lower bound is
replaced by dmax > 1.8Re;%7, or Eop < 1.5 x 1072Re)* Smce both Req and Re. are based on
mixture velocity, the lower bound is satisfied along the dispersed flow boundary in most practical
applications and is to be considered only for extremely viscous oils. The upper bound, however,
corresponds to Eopcos B > 5, which restricts the applicability of the model to systems of large
Eotvos numbers. For terrene gas-liquid systems, this restriction limits the applicability of the H-
model to sufficiently large diameter tubes (D > 1.7 cm for atmospheric air—water systems). In
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liquid-liquid systems, or reduced gravity two-fluid systems, the minimal tube diameter for which
the H-model is applicable is even larger.

It is important to note that in case a viscous fluid is considered to form the dispersed phase, the
critical Weber number (hence, dn.x) increases. This is due to the additional amount of energy
which is needed to overcome the internal viscous dissipation, induced by drop deformation and
mixing within the drop. According to Hinze (1955), effect of the dispersed phase viscosity is
represented by the Ohnesorge number, On = 1,/ (pdadmax)o's. For non-vanishing On, the constant
in (3) (and (9)) should be augmented by the term [l 4 f(On)]. For the critical conditions,
ax ~ ey, On =~ (niApg/pia®)’? = NO. This viscosity number (Morton number of the dis-
persed phase) includes only the physical properties of the two-fluid system. In systems where the
value of Nyq is significant, the critical conditions depend also on this dimensionless parameter.
However, in the lack of sufficient data for determining the functional dependence N.q, it is sug-
gested that the constants of the H-model should be tuned (augmented) when applied to systems of
significant Nygq.

In the following section, application of the H-model to systems of large Fop is demonstrated.
The bounds on the parameter range where this model is valid are further detailed by considering
also cases where criterion (13) is applied with d.;; = d.; (rather than with d.,).

2.4. Application of H-model for systems of Eop > 5

2.4.1. Dispersed bubble boundary

The application of the transitional criteria for obtaining the dispersed bubble boundary in gas—
liquid systems is demonstrated with reference to Tables 1 and 2. In this case the continuous phase
is water (U, = Uys) and the dispersed phase is air (Uys = Ugs).

Table 1 shows the results for a vertical tube of 2.5 cm. For vertical (and off-vertical inclined)
systems, cosff — 0 and d., < d. Therefore, d.y = d., 1s used in criterion (13). As shown in
Table 1, for high Ugs, the use of Hinze’s model (7) for dp,y in criterion (13) yields lower values for
the m1n1ma1 Uws required for sustaining a stable dispersion than those obtained using (dmax),-
Hence, the transitional liquid flow rates are predicted with dyex = (dmax) up to Ugs =~ 0.15 m/s,
thereafter model (11.1) (diax = (dmdx) ) should be used.

Table 2 shows the results obtained for a horizontal tube. For low air flow rates,
dy < d., and ( mx)O > (dmdx) Hence, criterion (13) with dcrlt =dy and dpa = (dmax), 18 valid up
to Ugs ~ 0.21 m/s. For 0.2 m/s < Ugs < 0.7 m/s, where (dmdx) > (dmdx) and d_, is still smaller
than dw, criterion (13) is applied with drax = (dmdx) and dyi = d.,. For higher air flow rates,
d., > d., and the transitional water velocity is obtained with Aoy = - (dinax), and deic = dw Itis to
be noted that the &3 — 0 transitional boundary predicted with ( mdx) (with either d., or dcb)
corresponds to a constant mixture velocity (U. = Uys + U = Ugs + Uws), which is the minimal
mixture velocity for transition to dispersed flow.

Comparisons between the predicted curve for transition to dispersed bubble flow and available
experimental data for horizontal, inclined and vertical air-water flows are shown in Figs. 1-3. As
shown, in all cases the model provides a reasonable prediction of the locus of transition (Cy = 1 is
used, although a better fit could have been obtained by Cy ~ 1.5-2). Fig. 3 shows that for vertical
tube of D = 5.1 cm (and larger diameters), the region of dispersed bubble flow at low Ugs merges
with the region of bubbly flow obtained at low liquid flow rates. Therefore, only



Table 1

Dispersed bubble boundary in upward air-water flow D = 2.5 cm, dey = doy /D = 0.067

Ugs (m/s)  Criterion 0.01 002 005 0.1 0.2 0.5 5 10 20
Uws (/s)  (dmax)y = des L72 171 168 153 123 073 - - =
Uws (/s)  (dmax), = dey = dog 064 081 110 170 221 260 291 295 253 1.80 0.92
Table 2
Dispersed bubble boundary in horizontal air—water flow D = 2.5 cm
Criterion Ugs (m/s) 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10
(dmax)y = des Uys (m/s) 1.72 1.71 1.68 1.63 1.53 1.23 0.73 - - -
) ) dey 0.067 0.067 0.067 0.067 0.067 0.067 0.067 - - -
(s ), = o Uws (m/s) 0.64 1.81 1.10 1.37 1.70 2.21 2.60 2.91 2.95 2.53
) ) dey 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
(dmax)o = dew Uys (m/s) 2.42 2.41 2.38 2.33 2.23 1.93 1.43 0.43 - -
) ) da 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046  — -
(dmay), = dev Uys (m/s) 1.41 1.58 1.82 2.02 2.20 2.35 2.30 1.95 0.77 0.10
dsp 0175 0.022 0.029 0.036 0.045 0.061 0.08 0.11 0.218 0.597
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AIR - WATER, D=2.5cm, Eop = 11

Experimental, Barnea & Taitel (1985)
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Fig. 2. Comparison of the H-model predictions with experimental data (Barnea and Taitel, 1985) for air-water flow in
inclined tubes (D = 2.5 cm, Eop = 11).

(dmax),( With dui = d,,) is practically relevant for predicting the transition to dispersed bubble
flow via criterion (13). Conditions for the existence of bubbly flow pattern in vertical and off-
vertical inclined gas-liquid systems were suggested by Taitel et al. (1980) and Barnea et al. (1985)
and have been revised in Brauner (1999).

From a practical point of view, the effect of the tube diameter on the locus of transition is of
particular interest for up-scaling laboratory data to larger diameters encountered in field opera-
tions.

For low flow rates of the dispersed phase, criterion (13) is applied with dyax = (dmax),- When
derit = deg 1t yields

(18plg cos f)"*o"!
,00'52770‘08
[ c

0.893
Ug:lhs+lks:265{ DW“} = 2.65F}%°, (17)

which predicts that for low Ug(— 0), superficial velocity of the continuous phase at transition to
dispersed flow increases proportionally to D% (flow rate is proportional to D**). When d,,
prevails, criterion (13) with (7) and (16) yields
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AIR - WATER, D=5.1cm, Eop = 46
Experimental, Barnea & Taitel (1985)
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Gas Superficial Velocity, Ugg(m/sec)

Fig. 3. Comparison of the H-model predictions with experimental data for air-water flow in D =5.1 cm tube
(Eop = 46).

A 0.6 0.342
Us =5 [—p ;”1‘;’;’;0[32? DO“} — SF) (18)

implying a slightly lower effect of tube diameter (U,, increases proportionally to D*?33) and slightly
higher sensitivity to surface tension and density difference. It is to be noted, however, that d,
increases with U, and thus, with increasing D, d;, > d,, already for low Ug. The condition under
which d.,/d., <1 evolves by substituting (18) in (16)

d 0.00685 G 0.1096 COSﬁ 1/2
¢ ~ 2 ch o - E— é 1 19.1
dey (Wrc cos f) <D2|Ap!g cos 3 ) <COS ﬁ’) ’ (19
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where

A 8WeE
N, = m% p3g _ ec40D (19.2)
pio Re;

is the viscosity (Morton) number of the continuous phase. For air bubbles dispersed in water,
Eq. (19.1) indicates that d,, becomes irrelevant for predicting the transitional boundary in tubes
of D = 14 cm. For inclined tubes, it becomes irrelevant already for smaller diameter tubes.

At higher flow rates of the dispersed phase, Tables 1 and 2 and Figs. 1-3 imply that the
transition to dispersed bubble flow is associated with a maximum in the continuous phase (water)
flow rate. For instance, for air-water flow in a 2.5 cm tube, Table 1 and Fig. 1 show that
the maximal water rate for transition to dispersed bubble is obtained at Ugs ~
3.5 (m/s) with Uyws ~ 3.0 (m/s). For higher water flow rates, the dispersed flow pattern is pre-
dicted to be stable irrespective of the air flow rate. The maximal flow rate of the continuous phase
along the transitional boundary is obtained at the point where dU/dUy, = 0. For dispersed gas
bubbles, criterion (13) with dinax = (dmax), and dei = dg, corresponds to the following relation
between the flow rates along the transitional boundary

ch
(ch + (]ds)ll12 <U—

0.6
) = 12 C}° Fy,, (20)
ds

where Fy, incorporates all the other system parameters (see (17)). This yields

& = 0.536; Max{U)} = 4.6C%>*: F0%3 = y~. 21
max{Uc } H Ho cs
Similarly, criterion (12) with dyay = (dmax ), and deie = dg, yields

(gd)machs} = 0.205; U’ = Max{Us} = 4.8 C};> 2% (22)

It is to be noted, however, that since d,;, increases with the mixture flow rate, at high Uy (and
high Ug) d., > d., also for horizontal tubes of small diameter (as demonstrated in Table 2).
Therefore, the predicted maximal continuous phase velocity is practically always defined by (21).
The diameter effect in (21) is U, o D+, identical to that indicated by (17) for low Ugs.

2.4.2. Dispersed flow boundaries in oil-water systems

The application of transitional criterion (13) for predicting the transition to Do,w or Dw/o in
oil-water systems is demonstrated in Figs. 4-7 in comparison with the experimental data of
Trallero (1995), Guzhov et al. (1973) and Simmons et al. (1998) obtained in horizontal tubes and
with the experimental data of Flores et al. (1997) obtained in vertical tubes. In these figures,
boundary 4 corresponds to the results of the H-model when applied with water as the continuous
phase (oil is dispersed, U, = Uws, Ugs = Uops), whereas boundary 5 is obtained when the H-model
is applied with oil as the continuous phase (water is dispersed, U, = Ups and Uy = Uys). In these
figures, a rough tuning of Cy(Cy = 0.5-2) is suggested to better represent the trends in the data.
However, since the critical velocity is proportional to C%°, such a variation in Cy has a minor
effect on the locus of the transitional boundaries, which may be practically insignificant in view of
the ambiguity involved in defining the exact location of the transition to fully dispersed flow in
oil-water systems. It is worth noting that for the critical flow rates along boundary 4, the mixture
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Fig. 5. The H-model predictions (Cy = 2) for transition to Do,w (boundary 4) and transition to Dy,o (boundary 5) in
horizontal oil-water system of Eop ~ 13. Comparison with experimental data of Trallero (1995).

Reynolds number is already sufficiently high to assure turbulent flow in water. However, when a
viscous oil forms the continuous phase, locus of the transition to Dw,o may be constrained by the
minimal flow rates required for transition to turbulent flow in oil (Re. = 2100 along boundary
LT,). As shown in Figs. 4,5,7, this is the situation for relatively low water rates, where the liquid
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churn flow (boundaries 7 and 9) is given in Brauner (1998).

flow rates predicted by the H-model along boundary 5 correspond to laminar flow of the mixture.
The required turbulent dispersive forces exist only beyond the L7,, boundary, which therefore
forms a part of the Dy/o transitional boundary. The prediction of other flow pattern boundaries
shown in these figures and the notation are detailed in Brauner (1998) (see also the detailed

notation in Fig. 4).

s[m/s]




N. Brauner | International Journal of Multiphase Flow 27 (2001) 885-910 899

For air—-water systems, when water form the continuous phase, (21) predicts the maximal water
superficial velocity where a flow pattern other than the dispersed bubbles may be stable. In liquid-
liquid systems, where p; ~ p., the maximal U, is shifted to lower ¢4. It can be shown that when
P4 = P> Eq. (21) is replaced by

(6a)y: = 0395, UZ = 3.T1CHHRS. (23)

In oil-water systems, when water forms the continuous phase U, = Uws, Ugs = Uos Eq. (23)
yields the critical water superficial velocity Uy, above which criterion (13) predicts a stable o/w
dispersion, irrespective of the oil rate; whereas with U, = Ugs and Uy, = Uws (23) predicts the
critical oil superficial velocity, Ujg beyond which, in view of (13), a dispersion of w/o is stable for
all Uws. Thus, for Ups > Ufq and Uws > Uy, the flow pattern is a dispersed flow. In this region,
the flow patterns of dispersion of w/o (Dw/o) and dispersion of oil in water (Do w) share a
common boundary. The transition between these two patterns takes place along the phase
inversion curve. Along this curve, the continuous and dispersed phases spontaneously invert (Yeh
et al. (1964), Arirachakaran et al. (1989), Nadler (1995), Mewes et al. (1998), Angeli and Hewitt
(1996)). It is the locus of the phase inversion curve which completes the definition of the regions of
stable Dw/o and Do w. Hence, the maximal holdup of either a stable Dy /o or Dow is controlled
by the phase inversion phenomena.

The transition from Dgw to Dwo in these maps (boundary 6) is calculated by applying
Arirachakaran et al. (1989) correlation for the critical water cut, &, at phase inversion

1—¢,

. Uws
(2% ) _05-0.1088 lo . or Ugs = U 24
b= (g ), Buln/1)s or Uos = Uns 24)

with #7, = 1 mPa s. For oils viscosities above ~ 0.2 Pa s, a constant value of &, ~ 0.15 was re-
ported based on the experiments carried out with agitated oil-water dispersions (Brocks and
Richmond, 1994). This correlation reflects experimental evidences that by increasing the oil vis-
cosity, its tendency to be dispersed increases and lower holdup of water phase, &y is required to
invert Dyjo to Do,w (the critical oil holdup for inversion increases). Hence, the maximal dis-
persed phase holdup cannot be bounded by an a priori determined constant (based on the con-
sideration of maximal package density of constant diameter spheres, say ¢4 = 0.52) which would
be applicable to any two-fluid system. The maximal holdup is not determined by geometrical
constraints, since the drops are not of uniform size, but rather by the physical properties of the
two fluids involved. The phase inversion phenomena and its modeling are the subject of a sub-
sequent paper.

2.4.3. Annular-mist boundary

In gas-liquid systems, the annular-mist pattern can be considered as the analog of w/o dis-
persion in liquid-liquid systems. The gas flow rates required for stabilizing the annular-mist
pattern can, in principle, be predicted by applying the transitional criteria to dispersed flow with
gas (air) as the continuous phase and liquid (water) as the dispersed phase. The model predictions
are demonstrated in Fig. 8 for horizontal and vertical tubes. In this figure, boundary 5 describes
the critical flow rates predicted by the H-model for stabilizing a dispersion of water drops in a
continuous air phase (boundary 4 is a segment of the transitional boundary to dispersed bubbles
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Fig. 8. The critical flow rates required for transition to mist flow. 5 — H-model applied with d.; = d.; 5 — H-model
applied with d.;; = dp.

shown in Figs. 1-3). Indeed, very high air superficial velocities are needed for dispersing water into
fine droplets, which seem to be beyond the range of the experimental data in these figures. This
boundary must not be interpreted as the locus for the onset of drops’ atomization, which occurs at
lower gas—flow rates (Ugs ~ 20 m/s in atmospheric air—water system, independently of the tube
diameter, Brauner, 2000), but rather as the conditions for stabilizing a fully developed mist flow
due to turbulent dispersive forces. It is to be noted, however, that in contrast to w/o dispersions
(where the momentum of water drops is insufficient for penetrating through the continuous oil
phase and for wetting the tube walls) in gas-liquid systems, impingement of water drops on the
walls keeps the tube walls wetted. Therefore, no clear distinction can be made between the annular
and the annular-mist patterns, the transition is rather gradual, and the annular-mist is usually
considered a sub-regime of annular flow. The presence of a water film effects an increase in the
friction factor, in which case, the Blasius friction factor correlation can significantly underestimate
the turbulent energy dissipated in the gas core. With augmentation of the friction factor, the
boundary of the mist flow (shown in Fig. 8) will shift towards lower gas rates.

It is further worth noting that a decline in the gas critical flow rate by increasing the liquid flow
rate as indicated by boundary 5 in Fig. §, evolves from criterion (13) applied with (7). It essentially
results from an increase of the mixture density with increasing amounts of entrained liquid
droplets. In horizontal tubes (Fig. 8(a)), the H-model predicts that the transitional boundary to
mist flow is controlled by d.ix = dep(< der, boundary 5'). The application of criterion (13) with
deir = do yields lower critical gas flow rates (boundary 5). The Experimental data are needed in
order to judge which of the models for d;; is more relevant. The phase inversion (DB-to-annular-
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mist transition) is expected in the ambivalent region, where the H-model predicts that both a
dispersion of bubbles-in-water and dispersion of water-in-air are stable (indicated in Fig. 8 by the
shaded area). It takes place at very high gas and liquid rates, beyond the range where the visual
characterization of flow patterns was attempted. This transition may not be indicated by an
abrupt change in the continuous phase, but rather by the coexistence of regions of Dg/w and Dy
in the flow field.

2.4.4. The H-model validity range

As discussed in Section 2.3, validity of the H-model is limited to systems of Eopcos f/ > 5. This
limitation evolves due to restriction on the turbulence model used in Hinze’s model, (drops/
bubbles smaller than the inertial sub-range scale, 0.1D) applied on a critical drop size represented
by d.,. For horizontal (or slightly inclined) systems and low mixture flow rates, where the critical
drop size is characterized by dy, the restriction dj < 0.1 corresponds to Eop >
2.31IN%18(cos B) "% (see (19.1) and (19.2)). For horizontal air-water systems, this extends
somewhat to the range of tube diameters for which the H-model is applicable at low mixture
velocities (from D > 1.7 cm corresponding to Eop > 5 to D > 0.95) cm. However, since at higher
mixture velocities, d, is the critical size, the criterion Eop > 5 is used to define the range where the
H-model is applicable for predicting the transition to dispersed flow.

It is of interest to note at this point that the value of Fop = 5 represents a threshold value also
for transition to surface tension dominant region in the rise velocity of Taylor bubbles (Brauner,
1999). In unhindered gravitational motion of drops and bubbles through liquids, the Eotvos
number is based on the drop diameter, however, Eos = Apgd*/8c = 5 represents a threshold
value for transition from ellipsoidal regime to spherical-cap drops/bubbles regime (Clift et al.,
1978).

3. Criterion based on Hughmark (1971) model (K-model)
3.1. Model equations

For drop sizes greater than the energy containing eddies (dmax > 0.1), Hughmark (1971) has
suggested that the dynamic pressure due to the turbulent field should be evaluated based on
fluctuating turbulent velocity. In pipe flow, the fluctuating turbulent velocity is of the order of the
friction velocity, wux

12 12
(u'z)l/2 X ux = <,0£C> = U, <§> , (25)

where 7 is the wall shear stress. Replacing (2.1) and (2.2) by (25) and assuming that the critical
Weber number is the same as that predicted by Hinze’s (1955) model (We.; = 1.17), Kubie and
Gardner (1977) have obtained the following model for d,x in a dilute dispersion

(dman), = 1.38 We' f71, 0.1 < dipay < 1. (26)
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In non-dilute dispersions, the wall shear stress is modeled by © = 1/2fp, U2, accordingly the
RHS of (26) should be multiplied by p./p,,- Following the arguments of Section 2.3, for dense
dispersions, this turbulence model can be used in the energy balance (9), which considers the
production rate of the dispersed phase surface energy in comparison to the supply rate of
turbulent energy by the continuous phase. Taking u}} ~ u? ~ u* ~ U, (0.5fp,,/ p.)'*, the rate of
turbulent energy supply is modeled by

. 3
Ey >~ meUczch. (27)
In this case, the condition, Ek ~ Z.ZS yields
dmax 1 -1 P &d
_ Pef = 2

where Ck is a constant, Cx = O{1}. When the Blasius correlation for the friction factor in used in
(26) and (28), these read

(c;’max)o — 30 We_ 'Rel?, (29.1)

m

(o), = 174Cx We 'R0 P2 <l‘°—“8> (29.2)
—od

m

Thus, in applying criterion (12) for two-fluid systems of Eop < 5, the models (29.1) and (29.2)
replace (7) and (11.1), respectively. As with the H-model, here too, a transitional criterion is
obtained by comparing the resultant dy,,x with the critical drop sizes defined by (14,15.1,16). It is
to be noted, however, that d, is irrelevant for systems of Eop < 5, since when U, along a
transitional boundary (predicted with d,;, as a critical size) is substituted back to the model for d;,
(16), the resultant expression reads

dep = drax = C/E0}’. (30)

The constant C is similar (however larger) than that used in (15.1) and (15.2). Therefore, here,
the only relevant critical drop scale is that defined by d,, and the transitional criterion to dis-
persed flow is

Arnax < dey (31.1)
with

ooy = Max{ (5lmax)0, (c?max)g} (31.2)

where (c;’rm)07 (c?max)‘3 are given by (29.1) and (29.2). This model is denoted as the K-model. It is
applicable to systems of Eop < 5, corresponding to d., > 0.1. It is to be noted, however, that when
d.; = D, the only relevant scale for characterizing the critical drop size is that of the tube diameter.
Considering d., as a relevant scale as long as d., < 0.5 limits the relevance of the K-model to
systems of 0.2 < Fop < 5.
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3.2. The KI-model

For systems of Eop < 0.2, the critical drop size is scaled with D. Taking d..;; ~ 0.5D, yields the
following transitional criterion:

~ ~ 1
Max{ (dmax>0(dmax) }g 5+ EBop <02, Re.>2100. (32)
In view of (29.1,29.2,32) in systems of small Eotvos numbers, the transition to dispersed

bubbles is determined in terms of: We.,Re.,p and &. Model (32) is denoted as the K1-
model.

3.3. Application of the K-model and KI-model to systems of Eop < 5

The significance of using the K-model (rather than the H-model) for systems of Eop < 5 is
demonstrated with reference to Figs. 9 and 10. These figures show the effect of tube diameter on
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Fig. 9. Comparison of the K-model predictions with experimental data for upward air-water flow in vertical tubes,
0.2 < Eop < 5:(a) D=1.23 cm, Eop = 2.6; (b) D = 0.985 cm, Eop = 1.7; (¢c) D = 0.815 cm, Eop = 1.2; (d) D = 0.615
cm, Eop = 0.66; (¢) D = 0.4 cm, Eop = 0.28.
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Fig. 10. Comparison of the K-model predictions with experimental data for air-water flow in horizontal tubes,
0.2 < Eop < 5:(a) D=1.23 cm, Eop = 2.6; (b) D =0.985 cm, Eop = 1.7; (¢c) D = 0.815 cm, Eop = 1.2; (d) D = 0.615
cm, Eop = 0.66; (¢) D = 0.4 cm, Eop = 0.28.

the locus of transition to dispersed bubble for air—water flow in small diameter, vertical and
horizontal tubes. In air-water flow, Eop < 5 corresponds to D < 1.7 cm. The effect of tube di-
ameter indicated by the K-model is evident by expressing the transitional boundary in terms of
dimensional variables. In the range of low flow rates of the dispersed phase (¢4 — 0), criterion
(31.1) is applied with (dmax),, (29.1). In this case, flow rates along the transitional boundary are
given by

0.5 1/1.8
<0Apg cos ﬁ') D"?

p0.8n02

U. = Ugs + U = 8.53 = 8'53}7}(0(}555 (33>



N. Brauner | International Journal of Multiphase Flow 27 (2001) 885-910 905

provided Re. > 2100. Eq. (33) predicts that for low Uy (= Ugs), the superficial velocity of the
continuous phase, U, = Uyws at transition increases proportionally to D*!! (compared to D*#
predicted by the H-model). Thus, the K-model predicts an almost negligible effect of the tube
diameter. This is confirmed in view of the comparison with the experimental data (Luninski,
1981; Barnea et al., 1983) shown in Figs. 9 and 10. Indeed, down-scaling flow pattern maps
from D~ 1 cm to D=0.4 cm seems to be associated with a negligible variation of the locus
of the transition to dispersed bubble flow. Barnea (1987) model tends to underpredict the
critical water velocity for transition to dispersed flow in small diameter tubes (as demon-
strated in Fig. 9(e). This model is inapplicable to the range of small D, since it yields
Aoax = O(1) or even larger than one). Application of the H-model for down-scaling would
also significantly underpredict the critical water flow rates. It is of interest to note that the K-
model shows a significantly higher sensitivity to surface tension, as expected for systems of
low Eop.

At higher flow rates of the dispersed phase (higher Ugs in Figs. 9 and 10) the transitional
criterion (31.1) is applied with (dmax),, (29.2). For low pressure air-water systems, p./p,, =
(1 — &), in which case the model predicts a monotonous increase in the critical water flow rate
with increasing the air flow rate. For horizontal systems (Fig. 10), the model tends to over pre-
diction of the observed critical water flow rates. The results obtained when the wall shear stress is
modeled assuming p,, = p. are also shown in Fig. 10 (dotted line). The experimental boundary
seems to fall in between these two approximations (implying that the effect of the holdup in dense
air dispersion can be represented in (29.2) by &4/(1 — &4)”, 0 < m < 1). It is to be noted that the
results shown in Figs. 9 and 10 were obtained with Cx = 1. Obviously a better fit with experiments
can be obtained by tuning the value of Cx when applied to a specific system
(U, increases proportional to Cy>°). 3

The restriction that d., represents the critical drop (or bubble size) as long as d., < 0.5 limits the
applicability of the K-model in air-water systems to tube diameters larger than D ~ 0.35 cm. For
capillaries of D < 0.35 cm (Eop < 0.2), the K1-model (d.;; ~ 0.5D) is suggested and is given by
criterion (32). For low Ugs, where (diax), prevails, (32) reads:

1/18
_ _ o _ 0.555
U. = Ui+ Uy = (7[)2'8 ]12.2 DO48> =972 F; (34)

which indicates that for low Uy, the critical U, increases with reducing the tube diameter pro-
portionally to D™** (provided Re, corresponds to turbulent flow). Thus, in capillaries, the effect
of tube diameter is predicted to be opposite to that obtained at large diameter (large Eop systems).
The prediction of the K1-model is in agreement with the experimental results of air-water-flow in
1.097 mm tube (Triplett et al., 1999) which is shown in Fig. 11. It is to be noted that boundary 3 in
the figure is the criterion suggested for the existence of bubbly flow in capillaries (Fop < 0.2
and g < 0.2-0.25) and (U,).,;, 1s the critical mixture velocity for obtaining areated liquid slugs
(Brauner, 1999).

For even smaller tube diameters, the mixture velocity predicted by (34) may not be sufficient to
obtain turbulent flow. In this case, the K1-model is no longer relevant. The flow rate of the
continuous phase should be increased to a level which results in turbulent flow, where the required
dispersive forces exist. At low Uy, the K1-model becomes irrelevant when

crit
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Ne
For (Rec); ;r = 2100 it corresponds to

Re, < (Reo)y s (35.1)

pcoD

2
c

< 16,000, Eop < 0.2. (35.2)

For air-water system (35.2) corresponds to D < 0.22 mm (Eop < 8 x 1073). For such small
(micro) tubes, the closure laws for the friction factor may be different from the conventional
relations used for macrotubes (see, for example, Mala and Li, 1999). However, with viscous
liquids (as a continuous phase) criterion (35.2) is met for larger D. For D < 160007?/(p.0), the
transition to fully dispersed (emulsified) flow is constrained by the locus laminar/turbulent
transition (U o< D', as discussed also with reference to the transition to Dw/o in Figs. 4-7).

It is to be noted, however, that in systems of d., > 1(Eop < 0.05), the region of low Uy cor-
responds to bubbly (drops) flow also in the range of low U, (see Fig. 11). Therefore, the transition
from bubbly flow to dispersed flow may not be distinct. At higher U, where transition from
intermittent/slug flow to dispersed bubble flow takes place, the K1-model is applied with (diax),.
resulting in higher continuous phase flow rate (and mixture flow rate) than those obtained by (34).
Thus, in this region the K1-model is applicable to smaller D than that indicated by (35.2)).

4. Effect of tube diameter on transition to dispersed bubble flow

The varying trend of the effect of tube diameter on the critical velocity of the continuous phase
is further demonstrated in Fig. 12. The figure summarizes the minimal critical mixture velocity for
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transition to dispersed air bubbles in atmospheric air—-water systems as predicted by the various
models in the range of their applicability. This critical velocity corresponds to the water superficial
velocity in the limit Ugs — 0 (e — 0). For the sake of convenient interpretation, dimensional
scales are used in the figure.

Air-water systems of Eop > 100 can be considered as large diameter tubes, where the tube
inclination has no effect on transition also for low air flow rates and the critical water velocity
increases with increasing D proportionally to D%#. On the other hand, capillary tubes are as-
sociated with Eop < 0.1, where the critical velocity decreases with increasing D. The lowest critical
water rates are predicted in the range Fop ~ 1-10, where some ambiguity exists regarding the
discontinuous transfer between the H-model and the K-model. The discontinuity is more pro-
nounced for vertical tubes. Apparently, this problem could have been resolved by extending the
range of the K-model to higher E6tvos numbers. But, the K-model significantly overpredicts the
critical water rates in vertical tubes of Fop > 5. Inspection of Figs. 1 and 9(a) indicates roughly a
doubling of the critical water superficial velocity in 1.23 cm vertical tube (Eop ~ 2.7) compared to
that observed in 2.5 cm tube (Eop = 11). This implies a possible physical justification for the gap
between the above two models, which evolves from the change in the characteristic turbulent
scales. However, more data are required for deciding whether (and how) the numeric constants
used in the models (those in the turbulent models for dp,x and in the models of d.) should be
tuned to provide a smooth transition between the K-model and the H-model.

5. Summary and conclusions

The prediction of drop size limitation in dense dispersions is essential for modeling dispersed
flow boundaries. To this aim, the Kolmogorov (1949)-Hinze (1955) model for break-up droplets
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in turbulent flow is revised. It is suggested that energy considerations can be employed for esti-
mating the maximal drop size in dense dispersions. The limitation imposed by the turbulence
model used by Hinze (1955) is also considered and for size drop/bubble larger than 0.1D, the
Hughmark (1971)-Kubie and Gardner (1977) model is employed.

Based on the revised and extended models, a unified approach for predicting the transition to
dispersed flow patterns in gas-liquid and liquid-liquid systems is suggested. In gas-liquid systems,
these include the dispersed-bubble and annular-mist flows; whereas, in liquid—liquid systems, the
boundaries of o/w and w/o dispersions (emulsions) are considered. Comparisons with the ex-
perimental data available from the literature indicate that the models are capable of predicting the
dispersed flow boundaries in a variety of two-fluid systems over a wide range of fluids’ physical
properties, tube diameter and inclination.

These models indicate that the locus of transition to fully dispersed flow is determined by
several dimensionless parameters, which include the flow Reynolds number, the Weber number,
the Eotvos number, the fluid flow rates ratio, density ratio (for py/p. > 1) and viscosity ratio (for
n4/n. > 1). However, the range where each of the models is applicable is defined in terms of the
Eotvos number, Eop = ApgD?/8a. Upon examining the effect of the tube diameter on the critical
flow rates required for establishing dispersed flow in air—water systems, a non-monotonic trend is
suggested. In large diameter tubes (Eop > 100), the critical mixture velocity phase increases with
increasing the tube diameter whereas in capillaries (Eop < 0.1), an opposite trend is predicted.
This implies that the up-scaling of data should be approached with care.
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